
Eur. Phys. J. D 32, 59–62 (2005)
DOI: 10.1140/epjd/e2004-00173-4 THE EUROPEAN

PHYSICAL JOURNAL D

Stability of Si70 cage structures
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Abstract. We have performed calculations on the cage structures with and without inner atoms, a stacked
structure for Si70 cluster by using FP-LMTO-MD method. It is found that the Si70 perfect cages, including
its ionic cages, would distort into puckered hollow balls. But the distorted hollow ball is still less stable
than a stacked structure. Further calculations suggest that a distorted cage structure with inner atoms,
resulting from Si60 perfect cages by inserting 10 inner atoms, is much more stable than the distorted hollow
cage and the stacked structure of Si70.

PACS. 36.40.-c Atomic and molecular clusters – 71.10.-w Theories and models of many-electron systems
– 71.20.-b Electron density of states and band structure of crystalline solids – 31.15.-p Calculations and
mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)

Fullerene cages are important structures for carbon clus-
ters. Among the cages, C60 and C70 cages show special
stability [1]. Although there are numerous possible C60

and C70 cage isomers, the most stable cages are the C60

cage with Ih, and C70 cage with D5h, respectively. The
cages have extensively stimulated a variety of studies on
their physical and chemical properties. Similarly, the cor-
responding Si60 and Si70 fullerene cages to the C60 and
C70 cages have been also investigated by different meth-
ods [2–9]. For Si60 cluster, two different results have been
proposed. Semi-empirical calculations at AM1 level sug-
gest that the perfect cage is the most stable [4–6]. Tight-
binding molecular dynamics method shows that the Si60
perfect cage is not stable and relaxes into a structure
resembling a puckered ball [8,9]. Using FP-LMTO-MD
method, we have also investigated the Si60 perfect cage.
Our result indicates that the Si60 perfect cage distorts into
a puckered ball with lower Th symmetry [10]. In addition,
their atomic arrangement tends toward tetrahedral geom-
etry [10]. Compared to one stacked structure built from
tricapped trigonal prism (TTP) subunits, the distorted
structure is still not stable [11]. For Si70 cluster, Khan
et al. have investigated the stability of its cage structure
using tight-binding molecular dynamics [8]. They have
found that the Si70 unrelaxed cage structure has different
bond lengths. But after relaxation, all the bonds become
approximately 2.37 Å.

In this paper, we have performed calculations on three
different structures of Si70 cluster by using more sophis-
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ticated FP-LMTO-MD method. Our principal aim is to
investigate the stability of the Si70 cages.

The FP-LMTO method [12–15] is a self-consistent im-
plementation of the Kohn-Sham equations in the local-
density approximation. More ten years ago, Methfessel et
al. had applied the method to clusters. The method has
been improved many times. At present, it has been used
successfully to find the ground state structures for small
and medium-size silicon clusters [16]. We have further im-
proved the method to investigate the stable structures for
silicon ionic clusters. Some satisfied results have been ob-
tained [17]. In this method, space is divided into two parts:
non-overlapping muffin-tin (MT) spheres centered at the
nuclei and the remaining interstitial region. The electron
wave functions are expanded in terms of muffin-tin or-
bitals [18]. The LMTO’s are augmented Hankel functions,
and are augmented only inside the MT spheres rather than
in the interstitial region [18–20]. All MT sphere radii for
Si are taken as 2.0 a.u. The LMTO basis sets include s,
p, and d functions on all spheres. Its potential and den-
sity are expressed as a linear combination of Hankel func-
tions. The details of how the molecular dynamics can
be performed are described in references [12–15,18–20].
The method is suited for investigating the cluster struc-
tures. In order to test the accuracy of this method, we
present our results for Si2−Si7 clusters in Tables 1 and 2,
and compare them with those obtained by some ab initio
(HF/6-31 G* and MP4/6-31 G*) calculations [21]. In the
method compared, the ground state structures were op-
timized with the standard 6-31G* basis set. The method
with the 6-31G* basis set has been used widely in the
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Table 1. Optimized molecular geometries (in Å) for Si2−Si7 clusters by the Hartree-Fock (HF) level of theory with the polarized
6-31G* basis sets and FP-LMTO-MD method. The entries under “Bond length, or bond angle” correspond to Figure 2 of
reference [29]. The HF/6-31G* values are cited from reference [21].

cluster symmetry bond length, or bond angle HF/6-31G* FP-LMTO-MD

Si2 D2h Si−Si 2.23 2.18

Si3 C2v d1−3 2.17 2.17

θ132 77.8◦ 80.0◦

Si4 D2h d1−3 2.30 2.31

d3−4 2.40 2.39

Si5 D3h d1−4 2.34 2.30

d1−2 2.78 2.96

Si6 D4h d1−3 2.35 2.35

d3−5 2.71 2.72

Si7 D5h d1−4 2.47 2.47

d1−6 2.48 2.45

Table 2. Calculated total binding energy (Eb, in eV), binding
energy per atom (Ea, in eV), scaled binding energy per atom
(Es, in eV), and the measured binding energy per atom (Eexp,
in eV) by Knudsen mass spectrometers. The HF/6-31G* and
MP4/6-31G* calculations are cited from reference [21]. The
experiment results are quoted from references [30–36].

cluster Si2 Si3 Si4 Si5 Si6 Si7

Eb (HF/6-31G*) 1.47 2.96 5.90 7.24 9.90 12.08

Eb (MP3/6-31G*) 2.60 6.34 10.57 13.74 18.02 22.16

Eb (FP-LMTO-MD) 4.05 9.97 15.81 21.30 26.97 32.61

Ea (MP3/6-31G*) 1.30 2.11 2.64 2.75 3.00 3.17

Ea (FP-LMTO-MD) 2.02 3.32 3.95 4.26 4.50 4.66

Es (MP3/6-31G*) 1.56 2.54 3.17 3.30 3.60 3.80

Es (FP-LMTO-MD) 1.56 2.54 3.05 3.28 3.47 3.59

Eexp 1.66 2.44 2.99 3.24 3.43 3.53

determination of geometries for a variety of systems, and
the calculated Si−Si bond lengths can be expected to be
reliable to within 1−2% [21]. Their electron correlation
effects were included by means of complete fourth order
Moller-Plesset perturbation theory with the 6-31G* basis
set (MP4/6-31G*). The theory has contributions from sin-
gle, double, triple, and quadruple substitutions from the
starting HF determinant and gives reliable binding ener-
gies for many systems. However, by comparison with the
experimental values, the binding energies of Si2 and Si3
obtained by the MP4/6-31G* calculations suggests that
about 80−85% of the true binding energy is obtained.
A scale factor of 1.2 empirically corrects for the under-
estimations in Si2 and Si3, and yields binding energies
in excellent agreement with experiment. If the scale fac-
tor is used for other Si clusters, the scaled binding ener-
gies per atom agree with experiment basically. We have
also obtained the lowest energy structures for the small Si
clusters by using the FP-LMTO-MD method. It is found
that our calculated structures are also reliable. Although
the calculated binding energies are larger than the corre-
sponding experimental values, we find that a scale factor

of 0.77 empirically corrects for the overestimations, and
yields binding energies in excellent agreement with exper-
iment. They are much closer to the experimental values
than those obtained by MP4/6-31G*. The use of such a
single uniform scale factor does not bias the relative com-
parisons of the different cluster [22]. The stable structures
in this paper are obtained by performing FP-LMTO-MD
optimization without any symmetry restrictions.

In this section, we will present three different stable
structures of Si70 cluster. Because there are many iso-
mers for Si70 cluster, it is very difficult to find its ground
state structure. However, it is interesting to investigate
the stability of its cage structures by selecting three rep-
resentative structures. The first structure is the perfect
icosahedral structure corresponding to C70 fullerene cage
shown as 70A in Figure 1. It consists of 12 pentagons and
25 hexagons. Their bond lengths range between 2.22 Å
and 2.27 Å. Starting from such a perfect geometrical con-
figuration, we have performed calculation on it by using
FP-LMTO-MD method. In each time step, the eigenvalue
problem is solved exactly and the output density is ad-
mixed to the input density in the usual way. The nuclei
are then moved according to the forces using the Verlet
algorithm. We then decompose the mixed density, move
each partial density along with its atom, and re-overlap
at the new geometry. After many iterations, the process
is stopped when the self-consistent condition meets. We
find that the perfect initial configuration with D5h sym-
metry is unstable, it would distort to a lower C2v sym-
metrical geometry. Its final stable configuration is shown
as 70B in Figure 1. It is obvious that the cage has se-
vere structural distortion. 70B looks like a puckered hollow
ball similar to Si60 cage [10]. The silicon atomic arrange-
ment on the surface tends toward tetrahedral geometry.
Some of the bond lengths become longer compared with
those in 70A. Because some of the 70 vertices have ap-
proximate tetrahedral angle, the bond angles also change
obviously. In addition, we have also performed calcula-
tions on the perfect anionic and cationic cages. It is found
that they have similar structural distortions to the neutral
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70A 70B 4.940 eV

70C 4.971 eV

(a)

70D 5.04 eV

10A

60A 4.90 eV

(b)

Fig. 1. Perfect cage 70A, distorted hollow cage 70B, stacked
structure 70C and distorted solid cage 70D for Si70 cluster.

Table 3. The binding energy per atom Ea and energy gap Eg

between the highest-occupied molecular orbital (HOMO) and
the lowest-unoccupied molecular orbital (LUMO) of distorted
cage and stacked structure of neutral, anionic and cationic Si70
cluster.

70B Ea Eg 70C Ea Eg 70D Ea Eg

neutral 4.93 0.11 neutral 4.97 0.36 neutral 5.04 0.12

anion 4.98 0.26 anion 5.01 0.66 anion 5.08 0.20

cation 4.86 0.14 cation 4.90 0.35 cation 4.97 0.12

cage. Their binding energies are listed in Table 3. Their
energy gaps Eg between the highest-occupied molecular
orbital (HOMO) and the lowest-unoccupied molecular or-
bital (LUMO) are also listed in Table 3.

70C is a stacked structure. The optimization calcu-
lation suggests that it is more stable than the distorted
cage 70B. It lies 2.66 eV below 70B. The structure con-
sists of four units. Its subunit includes 16 atoms. Three
atoms cap the subunits on the two ends. Similarly, its two
ionic structures, which correspond to 70C, are also more
stable than two charged hollow cages, respectively.

For Si60 cluster, similar situation is found [10]. Af-
ter structural optimization, the perfect cage would distort
into a puckered hollow ball shown as 60A in Figure 1. Its
binding energy per atom is 4.90 eV. If we insert 10 inner

atoms into the perfect hollow cage for Si60 cluster, we can
obtain an initial geometrical configuration of Si70 cluster.
Structural optimization finds that it would undergo ob-
vious distortion into a much more stable structure 70D
with D2h symmetry. Its binding energy per atom is up
to 5.04 eV. It is found from observing 70D and 60A in
Figure 1 that the cage of 70D has much severer structural
distortion compared to that of 60A. 10 inner atom config-
uration is shown as 10A in Figure 1. It can be obtained
by adding 4 edge atoms on the ground state structure (a
tetragonal bipyramid) of Si6 cluster. 70D is 7.70 eV more
stable than 70B. Its two ionic structures have also larger
binding energies. Obviously, the Si70 cage (70B) without
interior atoms is difficult to find experimentally.

For small silicon clusters (n = 5−13), their ground
state structures are polyhedrons, which are not pieces of
silicon crystal. The configurations reduce the number of
the hanging bonds on the surface atoms to minimum.
As the atom number increases, the stacked prolate struc-
tures become more stable than other structures. There
are not any inner atoms in the stacked structures between
n = 14 and n = 23. In the range from 14 to 23, an in-
ner atom inserted would form multi-bonds with the sur-
rounding atoms. In general, the coordination number of
the inner atom is larger than 6 because of narrow space
in the stacked structures. It is well-known that there may
be a saturation of coordination at 6, and further bond-
ing may cause overcrowding and destabilization for silicon
clusters [23]. The “prolate to spherical” structural transi-
tion begins at n = 24 in the experiment [24,25]. Start-
ing from this size, the compacted structures with inner
atoms begin to compete for the ground state structures
with the prolate structures. For the silicon clusters in the
range from 24 to 30, there is enough space for the inner
atoms inserted. For larger silicon clusters (n > 30), only
a few results have been reported up to now. Kaxiras pro-
posed physical appealing structures to explain the excep-
tional chemical stability of Si33 and Si45 clusters reported
by Elkind et al. [26,27]. In the Si45 cluster, Kaxiras’s
structure contains a central fourfold coordinated atoms,
a surrounding shell of four atoms that are also fourfold
coordinated, and 40 surface atoms arranged similar to the
π-bonded chains believed to be responsible for the 2 × 1
reconstruction of the Si(111) surface [28]. For the larger
silicon clusters, the inner atoms make the structures more
compacted. At the same time, they become more stable
because of some atoms fourfold coordinated and the sur-
face reconstructed. At this stage, the clusters transit into
crystal structure gradually as their sizes increase. It can
be expected that 70D should have larger binding energy
due to its structural characteristics as follows.

For C70 cluster, the perfect fullerene cage shows spe-
cial stability due to sp2 hybrid. However, the sp3 hybrid of
silicon results in the distortion of the cage, forming some
tetrahedron-like configurations on its surface. Although
the tetrahedron-like configurations strengthen the stabil-
ity of the hollow cage, it is only a meta-stable structure
because there is large interior space in its structure. How-
ever, the inner atoms inserted would make some atoms in
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the cage be fourfold coordinated and the structure more
compacted. For example, further observation on 70D finds
that many atoms are fourfold coordinated. The bond an-
gles and bond lengths of some atoms are equal to those
in silicon crystal approximately. This is the reason why
70D is more stable than 70B. As the atom number in-
creases, more atoms are fourfold coordinated. The com-
pacted structures with inner atoms appear preferable to
other structures when they transfer into crystal.

It is found from Table 3 that the energy gaps Eg of
70D and its ionic structures approximate to those of 70B,
whereas the Egs of 70C are different. It appears that the
Egs are mainly determined by their surface structures in-
stead of the inner configurations.

In summary, using full-potential linear-muffin-tin-
orbital molecular-dynamics (FP-LMTO MD) method, we
have performed calculations on three representative struc-
tures for the interesting Si70 cluster. Calculated results
suggest that the stable structure of Si70 fullerene cage is
a distorted puckered ball with C2v symmetry. But it is
not as stable as a stacked structure built from four sub-
units. If 10 atoms inserted into the perfect cage of Si60
cluster, structural optimization finds that the cage with
inner atoms is much more stable than the hollow cage
and stacked structure. As atom number increases, the pre-
ferred configurations in energy should be the compacted
cages with inner atoms.

A Foundation for the Author of National Excellent Doctoral
Dissertation of P.R. China under Grant No. 200320 supported
this work.
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